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SUMMARY

The performance of improved initial estimates and ‘heuristic’ and ‘adaptive’ techniques for time step
control in the iterative solution of Richards equation is evaluated. The so-called heuristic technique uses
the convergence behaviour of the iterative scheme to estimate the next time step whereas the adaptive
technique regulates the time step on the basis of an approximation of the local time truncation error.
The sample problems used to assess these various schemes are characterized by nonuniform (in time)
boundary conditions, sharp gradients in the infiltration fronts, and discontinuous derivatives in the soil
hydraulic properties. It is found that higher order initial solution estimates improve the convergence of
the iterative scheme for both the heuristic and adaptive techniques, with greater overall performance gains
for the heuristic scheme, as could be expected. It is also found that the heuristic technique outperforms
the adaptive method under strongly nonlinear conditions. Previously reported observations suggesting that
adaptive techniques perform best when accuracy requirements on the numerical solution are very stringent
are confirmed. Overall both heuristic and adaptive techniques have their limitations, and a more general
or mixed time stepping strategy combining truncation error and convergence criteria is recommended for
complex problems. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the numerical modelling of variably saturated flow it is important to combine accuracy with
reasonable computing time. The nonlinear character of the governing Richards equation normally
requires the use of iterative schemes, such as the Picard method, and efficient simulations can be
obtained only if time step adaptation is incorporated into the numerical code. Time step size can
be controlled by imposing restrictions on the size of the local time truncation error or by looking at
the convergence behaviour of the nonlinear iteration. The first type of approach has been proposed
for Richards’ equation by Gresho et al. [1], Tocci et al. [2], Diersch and Perrochet [3], and others.
The high order (up to fifth) time integration schemes used in Tocci et al. [2] however become
competitive against low order schemes such as backward Euler or Crank–Nicolson only when very
small relative errors are sought, a case that seldom applies in practical hydrological simulations.
Recently, a simpler approach for time step adaptation using low order schemes has been proposed
by Kavetski et al. [4, 5]. The second, more traditional approach to dynamic time step control is
simply, or more heuristically, based on the convergence behaviour of the nonlinear iteration scheme
[6]. In this paper we conduct a comparative analysis of the two approaches for a one-dimensional
infiltration problem with time-varying boundary conditions [7]. A second infiltration test problem is
used to assess the influence of some of the empirical parameters used in the truncation error-based
adaptive time stepping scheme.

As will be shown the truncation error-based approach provides successive estimates for the
current time step size based on local time truncation errors [4, 5]. In this sense we can consider it
to be an a priori method, in contrast to the convergence-based approach which provides an estimate
for the next time step size and can thus be considered an a posteriorimethod. There is some overlap
in these definitions, since in the a priori method when the error thresholds or tolerances (global
accuracy levels) are met, the solution is accepted and the truncation error estimates are used to
calculate the next size, while in the a posteriori method when convergence fails the current time
step is repeated using successively smaller step sizes. Both approaches provide mechanisms for
adapting the time step size in a dynamic manner, but since the terms ‘adaptive’ and ‘heuristic’ have
been used in the literature to distinguish, respectively, the truncation error-based and convergence-
based methods, we will use this convention as well. For brevity and following previous work we
will also use abbreviations for adaptive time stepping (ATS) and heuristic time stepping (HTS).

In a linearization scheme such as Picard, the number of iterations needed to converge is a
determining factor in the simulation efficiency. One way to enhance the convergence rate of the
Picard scheme is to provide the solver with an initial estimate that is closer to the final solution for
the current step. Cooley [8] described an extrapolation method for problems involving flow to a
well, and this method was also used by Huyakorn et al. [9]. In this paper an extrapolation scheme
with varying order will be derived and the effects of these improved initial guesses for the Picard
scheme will also be evaluated.

Although the functions commonly used to describe soil hydraulic properties are continuous
over the entire range of pressure heads, their behaviour, especially near saturation, is such that the
derivatives of these functions can exhibit sharp changes (and thus discontinuities in higher order
derivatives). Convergence difficulties when using analytical differentiation have been reported, and
the use of chord slope methods or other difference approximations has been recommended, either
over the entire pressure head range or in a localized fashion (i.e. only for those nodes whose
pressure head values are near saturation) [6, 9–11]. This aspect will also be briefly addressed in
the paper.
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2. DESCRIPTION OF TIME STEPPING AND EXTRAPOLATION METHODS

Richards’ equation can be written using the pressure head (�) formulation as

�(Sw)
��

�t
= ∇ · [KsKrw(Sw)(∇� + �z)] + qs(h) (1)

where �(Sw) = SwSs + ��Sw/��, Sw(�) = �(�)/� is water saturation, � is volumetric moisture
content, � is porosity, Ss is the aquifer specific storage coefficient, t is time, ∇ is the gradient
operator, Ks is the saturated hydraulic conductivity tensor, Krw(Sw) is the relative hydraulic con-
ductivity function, �z = (0, 0, 1)T, z is the vertical coordinate directed upward, and qs represents
distributed source or sink terms (volumetric flow rate per unit volume). Specification of the non-
linear Sw(�) and Krw(Sw) functional relationships, or soil characteristic curves, and of Neumann
or Dirichlet boundary conditions, completes the formulation. The van Genuchten and Nielsen [12]
expressions for Sw(�) and Krw(Sw) are used in this study.

Equation (1) is discretized by linear finite elements in space and a first-order backward Euler
scheme in time. This yields the following system of nonlinear algebraic equations:

f (�n+1) =
(
C(�n+1)

�tn
+ K (�n+1)

)
�n+1 −

(
C(�n+1)

�tn

)
�n − q(�n+1) = 0 (2)

where vector �n+1 contains the nodal pressure head values calculated at time value tn+1, �t is
the time step size, and matrices C and K are the stiffness and mass matrices, respectively. Note
that both the stiffness and mass matrices, as well as the source vector, are functions of �n+1.

The Picard scheme, also known as successive approximation, is used to solve the nonlinear
system (2). In this scheme, the Jacobian matrix is approximated by the system matrix evaluated
at the previous nonlinear iteration j , so that the linearized equation becomes [13]

J (�n+1, j )s j+1 =− f (�n+1, j ) (3)

where J =C/�t + K and s j+1 = �n+1, j+1 − �n+1, j . The iteration is repeated until convergence
is achieved, i.e. until the norm of s j+1 becomes smaller than a preset tolerance.

The initial solution estimate in the iterative procedure is usually the pressure head calculated at
the previous time step, i.e. for j = 0 we set �n+1,0 = �n . Intuitively, faster convergence is to be
expected when the initial solution estimate is as close as possible to the final solution. Thus we see
how time step size plays an important role in the convergence behaviour of the iterative scheme;
a small �t means a short step in the transient flow phase which corresponds to small variations
in pressure heads. An example where we may obtain unpredictably large or small pressure head
changes over the course of a simulation is when time-varying atmospheric forcing is applied as
a surface boundary condition. It can be appreciated how dynamic time step adaptation is critical
in such cases, since large time steps may be acceptable during certain periods (long interstorm
periods with low and constant evaporation, for example) whereas at other times (intense rainfall
bursts, for instance) the time step sizes will need to be very small. Note that time step control in
these cases should be based on the nonlinear characteristics of the problem instead of estimates of
time truncation errors. When a full Newton Jacobian is used, quadratic convergence is expected.
In these cases there is in general no restriction on time step size and time step control based on
truncation error estimates is optimal [2, 3, 14]. However, quadratic Newton convergence is ensured
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for all cases only in combination with perturbed problems, such as smoothing of characteristic
curves and high order time stepping schemes [2, 3, 14, 15]. When using a Picard approach, time
step restrictions are introduced by the linearization scheme, and control must be based on the
nonlinear behaviour.

2.1. Heuristic time stepping

In HTS, time step control is achieved by looking at the number of iterations needed to achieve
convergence, which is an approximate measure of the nonlinearity of the problem. For this reason,
and since there is no generally applicable method for predicting the number of iterations to
convergence, even though the theoretical rates of convergence for commonly used iterative solvers
is known, in practice an a posteriori heuristic control is used, as follows. At the end of each time
step the step size for the next time level is increased by a factor �tmag (bounded by a maximum size
of �tmax) if convergence at the previous time step was achieved in fewer than maxit1 iterations, it
is left unchanged if convergence required between maxit1 and maxit2 iterations, and it is decreased
by a factor �tred (bounded by a minimum size of �tmin) if convergence required more than maxit2
iterations. If convergence is not achieved (maximum number of iterations maxit exceeded), the
time step is repeated (‘back-stepping’) using a reduced time step size (factor �tred, to a minimum
of �tmin). The values of the three maxit levels and the �t bounds and multiplicative factors are
chosen empirically and are held fixed for the entire simulation.

2.2. Adaptive time stepping

Recently, several adaptive time stepping techniques have been proposed that modify the time step
size automatically during a simulation based on local error control, a feature that is not used
in heuristic approaches [2, 3, 16]. The adaptive predictor–corrector one-step Newton (PCOSN)
scheme by Diersch and Perrochet [3] controls the local time truncation error depending on the
predicted and calculated solution for a certain time step. The time step adaptation scheme from
this method was originally introduced by Gresho et al. [1]. Tocci et al. [2] employed the DASPK
algorithm which is a variable-step size, variable-order (up to fifth-order) differential algebraic
equation (DAE) solver on the pressure head based form of Richards’ equation. In this approach,
estimates of temporal truncation error were used explicitly to control the solution order, which
ranged from first- to fifth-order in time, and the time step size. Their work points out that adaptive
time stepping becomes comparatively efficient only when using higher order DASPK or when
higher accuracy levels are required. Fixed time step methods, as well as many cases of simple
adaptive time stepping methods, provided better performance than a first-order restricted version
of DASPK. Williams and Miller [16] used a method to solve a transformed version of Richards’
equation in combination with a variable-order, variable-step size solver. They concluded that this
solver is more effective than heuristic time stepping for intermediate to high levels of accuracy.

In our finite element model overall accuracy is limited by the Euler time discretization scheme
used. The ATS method proposed by Kavetski et al. [4, 5] is applicable to this scheme and is quite
straightforward to implement in existing software. The ATS approach evaluates the local time
truncation error by calculating the difference between solutions of different accuracy. To this aim,
�n+1 in (2) can be thought of as the result of a first-order Taylor series expansion

�n+1
1 ≈�n + �tn�̇

n+1
(4)
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where �̇ indicates time derivative. The accuracy of this approximation can be raised to second-order
by averaging the derivative estimates from consecutive time levels [4]

�n+1
2 ≈�n + 1

2�t
n(�̇

n + �̇
n+1

) (5)

The difference between these first- and second-order approximations is an O(�t2) approximation
of the truncation error incurred during the (n + 1)th time step from tn → tn+1 with time step size
�tn [5]

en+1≈|�n+1
1 − �n+1

2 | = 1/2�tn|�̇n+1 − �̇
n|≈1/2(�tn)2|�̈n| (6)

where we have used the L2 norm in evaluating this expression. The approach suggested
by Kavetski et al. [4] substitutes (4) into (2) and solves for �̇. In our implementation we solve
for � and evaluate �̇ by finite differences using the pressure heads calculated at previous times,
as suggested by Kavetski et al. [4, 5, 10].

Although the infinity norm ‖e‖∞ can be used to constrain the largest absolute error across the
entire soil pressure profile, it is preferable, especially in the case of flow in both saturated and
unsaturated media, to use a mixed absolute-relative error criterion, i.e. the time step is accepted if

maxi (e
n+1
i − �R|�n+1

i | − �A)<0 (7)

where �A and �R are absolute and relative error tolerances, respectively, and i indexes the nodes
in the spatial mesh. The node index with the largest error measure is stored as iCrit to be used
in the step size selectors described below. It can be observed that as |�| → 0, the absolute error
criterion dominates, whereas if |�| is large the relative error component will be decisive.

If the error criterion (7) is met, the size �tn+1
1 of the next time step is calculated as

�tn+1
1 =�tn ×min

⎛
⎝s

√√√√ �R|�n+1
iCrit| + �A

max(en+1
iCrit,EPS)

, rmax

⎞
⎠ (8)

If the error criterion is not satisfied, a back-stepping mechanism is activated whereby the current
time step is repeated as many times as needed using a reduced step size, calculated with successive
values eiCrit,k rather than eiCrit

�tnk+1 =�tnk ×max

⎛
⎝s

√√√√ �R|�n+1
iCrit,k | + �A

max(en+1
iCrit,k,EPS)

, rmin

⎞
⎠ (9)

where the subscript k indexes consecutive step size estimates. When this occurs, we refer to the
k (>1) back-steps as ‘failed steps’, to distinguish them from the back-steps that occur when the
iterative solver does not converge (which can happen for both the ATS and HTS schemes). When
the latter happens in ATS, there is not sufficient information for calculating a reduced time step
size with (9) and so HTS-type time step reduction is used. We refer to these occurrences (for both
HTS and ATS) as ‘back-steps’ in the test case results.

A number of empirical parameters are used to increase the robustness of the estimates in (8)
and (9): rmax and rmin limit the multiplication and reduction factors and are often set equal to 4.0
and 0.1, respectively; s is a safety factor (s ∼ 0.8–0.9); EPS is a machine zero approximation
(usually set to 10−10) that guards against floating point errors [5].
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2.3. Initial solution estimates

Extrapolation can be used to improve the initial solution estimate for Picard iteration. In Cooley [8]
and Huyakorn et al. [9] a first-order extrapolation method is described. We implement instead a
second-order extrapolation method, similar to a scheme presented by Diersch and Perrochet [3],
that is derived as follows. This scheme differs from the one used in References [4, 5] by taking
into account all the second-order terms in the Taylor expansion. The Taylor expansion of �n+1

around �n is

�n+1 =�n + �tn�̇n + (�tn)2

2! �̈n + · · · (10)

Approximating �̇ and �̈ by Taylor series using �n , �n−1, and �n−2 we obtain

�n+1 ≈ �n + �tn
(

�n − �n−1

�tn−1

)

+ 1

2

(
(�tn)2

�tn−1
+ �tn

)
·
(

�n − �n−1

�tn−1
− �n−1 − �n−2

�tn−2

)
(11)

This equation can be used to improve the initial estimate for the nonlinear iterative solver at the
beginning of each time step. Taking only the first term into account results in the standard, zeroth-
order, procedure of setting �n+1,0 =�n , including the second term gives a first-order estimate,
and taking all three terms into account gives a second-order extrapolation.

2.4. Chord slope evaluation of the characteristic curves

The soil characteristic curves Sw(�) = �(�)/� and Krw(Sw) used in the test cases are given
by van Genuchten and Nielsen [12]

�(�) = �s − �r
[1 + (�|�|)n]m + �r, ��0

�(�) = �s, �>0

(12)

K (�) = KsKrw(�) = Ks(1 − (�|�|)n−1[1 + (�|�|)n]−m)2/[1 + (�|�|)n]m/2, ��0

K (�) = Ks, �>0
(13)

where �r is the residual moisture content, �s ( = �) is the saturated moisture content, m = 1−1/n,
and n and � are fitting parameters. Equation (1) contains the derivative of the water saturation Sw,
or equivalently moisture content �, with respect to pressure head, given as

d�

d�
= (n − 1)(�r − �s)|�|n−1

�−n[1 + (�|�|)n]m+1
, ��0

d�

d�
= 0, �>0

(14)
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In some of the simulations we ran severe difficulties were encountered when this analytical ex-
pression for the derivative was used. This may be due to the shape of the water capacity function
��/�� and the relative conductivity function Kr(�) near saturation [15]. For instance, the slopes
change from −∞ for ��/�� and ∞ for Kr(�) when n<2 to zero when n>2. In order to attempt to
overcome this problem, two variants of a chord slope technique combined with a centred difference
formula were used [9, 11]. One variant uses the pressure head at the previous time step, the other
at the previous nonlinear iteration. If the absolute difference between the pressure head at the
current nonlinear iteration and the pressure head at the previous time step (or previous nonlinear
iteration), i.e. |�n+1, j+1 − �n| (|�n+1, j+1 − �n+1, j |) is smaller than a user specified tolerance
TOLKSL (0.005m was used in the test problems), the centred difference formula is used

d�

d�
= �(� + TOLKSL) − �(� − TOLKSL)

2TOLKSL
(15)

If this absolute difference is larger than TOLKSL, a chord slope approximation is used

d�

d�
= �(�n+1, j+1) − �(�n)

�n+1, j+1 − �n
or

d�

d�
= �(�n+1, j+1) − �(�n+1, j )

�n+1, j+1 − �n+1, j
(16)

3. NUMERICAL TESTS

3.1. Test problem 1

Comparison between HTS and ATS is performed on the test case proposed by Kavetski et al. [10].
The problem considers a soil column of 2.0m length discretized with a vertical resolution
�z = 0.00625m. The bottom of the column is a water table boundary condition (i.e. �= 0) while
a time-dependent Dirichlet condition is imposed at the top boundary (Figure 1)

�(z = 2, t) =

⎧⎪⎨
⎪⎩

−0.05 + 0.03 sin(2�t/100 000), T1: 0<t�100 000 s

0.1, T2: 100 000<t�180 000 s

−0.05 + 2952.45 exp(−t/18 204.8), T3: 180 000<t�300 000 s

(17)

The initial pressure head distribution is

�(z, t = 0) =
⎧⎨
⎩−0.05 + 0.05 − 1.99375

0.00625
(z − 2), 1.99375�z�2

−z, 0�z<1.99375
(18)

The soil parameters are �r = 0.095, � = 0.410, � = 1.9m−1, n = 1.31, Ks = 0.062m/d, and soil
elastic storage Ss = 0.41× 10−4 m−1. These soil properties correspond to an unconsolidated clay
loam with a nonuniform grain size distribution [14]. Kavetski et al. [5] carried out a similar
comparison using a moisture-based form of Richards’ equation and a different test case that does
not feature a time-varying boundary conditions with surface ponding.

Table I summarizes the results for the first 100 000 s of simulation time (period T1 in Figure 1)
for ATS and HTS with zero- and second-order initial solution estimates (ATS-0, ATS-2, HTS-0,
HTS-2). The ATS parameters were �R = 0.0, �A = 0.001, s = 0.85, rmax = 4.0, rmin = 0.1, and
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Time [s]
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 (z
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 2
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[m
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0 0.5 1 1.5 2 2.5 3

x 105

0

0.05

0.1

0.15

T1 T2 T3

− 0.1

− 0.05

Figure 1. Dirichlet boundary condition imposed at the top of the soil column versus
time for the first test problem.

Table I. Comparison of ATS and HTS with zero- and second-order initial solution estimates for the first
100 000 s. CPU times are relative to ATS-2.

Exact ATS ATS HTS HTS
Order of initial estimate solution 0 2 0 2

CPU time 1.44 1 8.38 1.15
Number of time steps 2134 525 524 4668 635
Nonlinear iterations 8903 3277 2221 18 799 2556
Total cum. abs. MBE (%) 0.29 1.68 1.68 1.00 1.49
MAE (mean absolute error) (m) 8.090× 10−4 8.090× 10−4 6.284× 10−4 3.536× 10−4

RMSE (m) 0.0029 0.0029 0.0023 0.0010

EPS= 1× 10−10. For HTS we set �tmag = 1.1, �tred = 0.8, �tmax = 5000, �tmin = 1× 10−6,
maxit1 = 8, and maxit2 = 4. For both the ATS and HTS schemes the maximum number of it-
erations, maxit, was 50 and the convergence tolerance on the L2 norm of the error, �P I , was 10−6.
The initial time step size �t0 was 10 s. Derivatives of the moisture characteristics were calculated
analytically. A surrogate exact solution for this T1 period is evaluated numberically using the
HTS scheme with an iteration error tolerance = 10−8 (�tred = 0.67 and �tmag = 1.5) and a vertical
resolution �z = 0.001m. The accuracy for each of the ATS and HTS simulations is evaluated by
means of the mean absolute error (MAE) and root mean square error (RMSE) calculated with
respect to the surrogate exact solution. From these statistics in Table I it can be concluded that
all runs have adequate and comparable accuracy. The results for the ATS implementation are very
similar to those obtained by Kavetski et al. [10]. There is very little difference between the use of
zero- or second-order extrapolation in the total number of time steps, but a significant reduction
in nonlinear iterations is obtained for ATS-2. This shows the beneficial effects of an accurate
initial guess for the convergence of the Picard technique. HTS shows a much larger difference
in performance between the zero- and second-order alternatives. The mass balance errors for the
HTS runs are slightly lower than those for the ATS runs. Using second-order extrapolation results
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Figure 2. Evolution of �t and mass balance errors during the first 100 000 s of the test case simulation.
ATS-0 and ATS-2 show similar behaviour, while extrapolation order has a great effect on HTS.

in a considerable gain in numerical performance arising from the much larger step sizes that were
made possible, as can be seen from Figure 2. Although the number of time steps for HTS-2 is
approximately 20% higher than for ATS-2, the number of nonlinear iterations is less than 10%
higher. For both ATS-2 and HTS-2 on average about four nonlinear iterations per time step are
performed. These results suggest that the nonlinearity in this part (T1) of the simulation is relatively
mild and the Picard scheme behaves reasonably well.

The evolution of �t (Figure 2) is different for ATS and HTS. ATS shows a smooth increase of
the step size, which is one of the objectives of the method, with an always larger �t compared
to HTS, causing in turn larger mass balance errors (MBE) compared to HTS. In fact, HTS with
zero-order extrapolation, which results in very small step sizes throughout the simulation, yields
the smallest MBE. For all four schemes the MBEs are nonetheless acceptably small (at most a
few per cent).

Analysis of the first 100 000 s of the test case simulation shows that second-order extrapolated
initial guesses are very effective in enhancing the convergence properties of the Picard linearization.

The second period (T2, 100 000 �t�180 000) is very challenging for numerical solvers. Because
of the sudden increase of the upper Dirichlet boundary condition to a positive value of 0.1m
(ponding), a sharp moisture front infiltrates into the soil column. At the beginning of the third
period (T3) ponding decreases exponentially, reaching asymptotically a final value of −0.05m,
and by the end of the simulation the entire column is close to full saturation (Figure 3). Attempts
to simulate the entire period with analytical differentiation of the moisture characteristics resulted
in infinitely small time step sizes and endless run times for both the ATS and HTS schemes. For
this reason the two chord slope techniques described earlier were used, labeled �n+1, j (pressure
head at the previous nonlinear iteration) and �n (pressure head at the previous time step). All
simulations were calculated using �tred = 0.25.

In Figure 4 we plot the evolution of �t , MBE, and cumulative MBE. At the end of T1 large
time steps are attained, but these drop dramatically in period T2. In this ponding period a slight
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Figure 3. Pressure head (left) and water saturation (right) profiles. The results shown are for
HTS with the chord slope technique based on the previous nonlinear iteration. The other

schemes produced very similar profiles.

increasing trend in time step size can nevertheless be observed, although strong oscillations also
occur. These oscillations have been attributed to insufficient spatial resolution [4, 5]. The time step
size remains small from 180 000 to 200 000 s, as ponding gradually decreases to zero. In the final
period �t increases rapidly and reaches large values (up to about 3000 s for ATS). This indicates
easier nonlinear solver conditions due to smoother infiltration fronts and surface conditions that
are no longer fully saturated.

In the HTS runs, the MBE remains almost constant and close to zero, except for a few time
steps around 100 000 s. The peak in mass balance error for all the ATS simulations at the transition
from T1 to T2 is caused by the fact that the error control mechanism was switched off in an
interval of 40 s centered at t = 100 000 s. This was necessary because even very small time steps
were rejected by the ATS error criterion. The reason for this behaviour may be attributed to the
fact that the truncation error estimator based on �n does not take into consideration the drastic
change in nonlinearities due to the jump in the boundary conditions. This solution is similar to
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Figure 4. Evolution of �t and mass balance errors for the entire simulation.

the one proposed by Kavetski et al. [5] who used an internal re-initialization in order to overcome
problems associated with discontinuous boundary conditions. The ATS runs show an additional
MBE peak at about 280 000 s due possibly to too-large time step sizes. Generally, it can be stated
that the MBEs are proportional to time step size for both ATS and HTS, in agreement with
theory.

Other simulation statistics are summarized in Table II. The mass balance error (MBE) at any
given time step is calculated as the absolute difference between the changes in water storage during
that time step. The change in water storage is calculated in two ways, as the difference between
incoming and outgoing water volumes and from changes in volumetric moisture content caused
by differences in pressure head between the current and the previous time level. The total time
steps and linear iterations used by the ATS scheme with �n-based chord slope during T1 (522
and 2331, respectively) are comparable to those reported in Kavetski et al. [10] (559 and 2153,
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respectively), whereas for the entire period our ATS implementation required 4.6 times fewer steps
than in Kavetski et al. [10]. HTS requires a much larger number of time steps, but fewer nonlinear
iterations, resulting in a 30% save in CPU with respect to ATS. While no significant difference
can be seen in the results of the two chord slope approaches for HTS, ATS-�n+1, j appears to
outperform ATS-�n , in particular for the last two simulation periods. Linear iterations, not reported
in Table II, were typically 1–2 per nonlinear iteration for all simulations.

Examining more closely the HTS-�n and ATS-�n+1, j schemes, we note that HTS resulted in
significantly fewer back-stepping occurrences. The reason for this is that the step sizes predicted by
ATS, while ensuring low truncation error, do not guarantee convergence of the Picard scheme. If the
nonlinear solver does not converge, the back-stepping mechanism is activated whereby the current
time step is repeated with a reduced time step, obtained by multiplying �t with �tred (= 0.8).
This smaller �t might result in a low truncation error, setting the ATS magnification factor for
calculating the next time step size (Equation (8)) almost always equal to its maximum value of
rmax. Due to this sudden increase in �t , the Picard scheme will probably again not converge, and
the back-stepping mechanism is activated again.

Under highly nonlinear conditions, convergence evidently requires time step sizes that are
much smaller than those dictated by accuracy considerations alone. This suggests that time step
adaptation based on error control may not be optimal. On the other hand, HTS looks at the
nonlinear convergence behaviour and is more conservative in increasing the time step size. A
mixed form of time step adaptation may therefore be the best approach, giving more weight to
error-based control when nonlinearities are mild, and to nonlinear convergence behaviour otherwise.
Indeed effective schemes for solving nonlinear equations necessarily interact with the step size
selection strategy. A comprehensive approach should use all the information that can be gathered
from the entire simulation (e.g. error estimation, nonlinear behaviour, boundary conditions and
forcing function variations). Optimization techniques together with optimal control theory provide
in this sense an ideal framework for the solution of this problem, as suggested by Gustafsson and
Söderlind [17].

3.1.1. Zoom on first switch in boundary conditions (at 100 000 s). We examine more closely, for
the transition period from T1 to T2, the influence of the time step magnification and reduction
factors, namely �tmag for HTS, rmax for ATS, and �tred for both schemes when Picard itera-
tion does not converge. The values for these parameters are given in Table III, along with the
results, which are also shown in Figure 5. Second-order initial solution estimates were used for
all runs.

Several points can be highlighted from the results shown in Table III. The best CPU times are
obtained for the least aggressive time stepping methods, i.e. those with small values of �tmag or
rmax. For ATS this is obtained with the �n+1, j chord slope option and for HTS with the �n option.
The runs with more aggressive time stepping required CPU resources up to 44 times greater than
the less aggressive runs. Although the more aggressive runs required few nonlinear and linear
iterations per time step in the first period to 100 000 s (see Tables II and III), it is evident that many
more are needed after 100 000 s when ponding sets in. In the first period HTS and ATS produce
comparable results. ATS shows a smooth evolution in �t (Figure 5), the reason being that the
nonlinearities are not so large during T1 and the simulation is controlled by the time truncation
error. As a consequence, the magnification factors calculated by the ATS scheme (Equation (8))
never attain their maximum value of rmax. After switching to ponding, however, the nonlinearity
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Figure 5. Evolution of �t and cumulative mass balance error for the time period between 0 and
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scaling for the zoomed �t axis.

strongly increases and time step sizes need to be kept very small in order to achieve convergence
of the iterative Picard scheme. These small time steps produce very small time truncation errors,
resulting in maximal (�t × rmax) time step projections in ATS. The result is a strongly oscillating
time step size between the values imposed by convergence requirements and those suggested by
truncation error estimates, as can be clearly seen in Figure 5. In Figure 5 we also see that both
schemes show a jump in MBE after 100 000 s.

3.2. Test problem 2

In order to evaluate the influence of the different ATS parameters, a vertical infiltration problem
in a 60 cm soil column [4, 11, 18] will be solved. This soil column is parameterized using the
van Genuchten relationships with Ks = 9.22× 10−5 m/s, �r = 0.102, �s = 0.368, � = 3.350m−1,
and n = 2. A vertical discretization of 0.6 cm is used. The Dirichlet boundary conditions are
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Figure 6. Pressure head (left) and water saturation (right) profiles for the second test problem.

�(z = 0.6m, t) = − 0.75m and �(z = 0, t) = − 10m. The initial pressure profile is specified as

�(z, t = 0) = −0.75m z>0.594m

= −10m z�0.594m (19)

These forcing conditions lead to the development of a sharp infiltration front and induce large
gradients in the solution. We used analytical differentiation of the soil characteristic curves and
second-order initial solution estimates for all runs.

Because it is not possible to obtain an analytical solution for this problem, a surrogate exact
solution is evaluated numerically using the ATS scheme with a truncation error tolerance �R = 10−7,
�A = 10−3, and an iteration tolerance �PI = 10−9 [4]. Although it is not necessary to set �PI<�R,
it may be prudent to do so to ensure that residual nonlinear solver errors do not exceed the local
temporal truncation errors. In order to obtain a surrogate exact solution as accurate as possible,
consecutive vertical refinements of the grid were made using 100, 1000, and 5000 layers. This
resulted in decreasing mass balance errors, with the lowest value of 8.17% obtained for the
5000-layer run. Figure 6 shows the pressure head and the water saturation profiles for this test
problem.
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Table IV. Numerical performance for different rmax values. CPU times are relative to rmax = 1.5.

Exact
rmax solution 1.5 2 3 4

CPU time 1 1.54 2.50 2.56
Total successful time steps 31 675 1622 1959 2417 2129
Average time step size (s) 3.157× 101 6.165× 101 5.105× 101 4.137× 101 4.697× 101

Total nonlinear iterations 177 589 11 472 18 163 28 362 29 877
Total failed steps 6 1011 1901 3251 3177
Total back-steps 15 0 0 0 0
Total cum. abs. MBE (m3) 1.547× 10−4 2.981× 10−4 2.946× 10−4 2.916× 10−4 2.939× 10−4

Total cum. abs. MBE (%) 8.17 14.98 14.81 14.67 14.78

We will assess the influence of ATS parameters rmax, �A, and �R. For all runs the other ATS
parameters are s = 0.85, rmin = 0.1, EPS= 10−10. The initial time step size is 0.1 s.

3.2.1. Influence of rmax. The ATS parameter rmax in Equation (8) is intended to prevent spuriously
large step size changes. Although Kavetski et al. [4] suggest to keep this parameter fixed to a
value of 4, the influence of this parameter on computational efficiency and accuracy is investigated
via several runs using rmax values of 1.5, 2, 3, and 4 (Table IV).In these runs we used �R = 10−2,
�A = 10−3, and �PI = 10−4. Contrary to what one might expect, increasing rmax does not necessarily
result in a more efficient simulation. When the error criterion (7) is met, a magnification factor is
calculated that apparently can be too optimistic or aggressive when not reset by a sufficiently low
limiting value of rmax. This increases the probability of failed steps in subsequent time steps, as
is clear from Table IV, as well as the frequency of MAGFAC values less than 1.0, i.e. reductions
in time step size to correct for previous overestimations(Figure 7).

The interesting thing about the fact that better performance is obtained with lower rmax values
(at least in this test case), while recognizing that lower rmax also means that the percentage of time
steps for which MAGFAC= rmax increases (over 80% for rmax = 1.5 in Figure 7), is that when
MAGFAC= rmax the ATS scheme reduces to an essentially ‘heuristic’ method (more rudimentary
even than the HTS scheme since there are no maxit1 and maxit2 thresholds).

Also surprising in Figure 7 is the extremely low frequency of time steps for which ATS actually
predicts (without being overridden by rmax) an increase in time step size (i.e. 1<MAGFAC<rmax).
One might expect that when the error criterion (7) is met, step size increases would be more
prevalent than step size reductions. Indeed this is what we observe for the ‘exact’ solution.
Interestingly the ‘exact’ solution in Figure 7 is also the only case where MAGFAC= rmax hardly
ever occurs. Taken together, these two observations seem to suggest that the ATS scheme, as with
the DASPK method mentioned earlier, is most effective when the accuracy requirements on the
numerical solution are high or stringent.

3.2.2. Influence of �A. Three different values of parameter �A in the error criterion (7) will be
simulated: 0.001, 0.01 and 0.1m. �R is kept constant at 10−2 and �PI = 10−4. For the surrogate
exact solution �A = 0.001 and �R = 10−7.

In Figure 8 we see that the �A = 0.1 simulation is noticeably less accurate than the others, with
pressure head errors as large as 2m. This is also seen in Figure 9, where the larger time step sizes
enabled by a low accuracy requirement also produce, as expected, higher mass balance errors.
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3.2.3. Influence of �R. To evaluate the influence of the �R parameter in Equation (7), 4 simulations
are compared with �R values of 10−7 (‘exact’ solution), 10−5, 10−2, and 10−1. The absolute error
parameter �A was kept constant at 0.001 and �PI was set to 0.01× �R.

The results are very similar to those reported for the �A parameter, with the lowest accuracy
case (�R = 0.1) producing an inferior solution (not shown). The ATS schemes for the �R = 10−5

and 10−7 runs are also very similar to the surrogate exact solution in terms of MAGFAC behaviour
(Figure 10), again confirming the earlier observation concerning ATS being most effective when
accuracy constraints on the solution are very rigid.
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4. CONCLUSIONS

The behaviour of different schemes for initial solution estimates and adaptive time stepping were
tested for a Richards equation model. Time step adaptation is essential to achieve reasonable
computing performance in realistic applications of Richards’ equation. Two approaches for doing
so make use of local time truncation error estimates or of the convergence behaviour of the
nonlinear solver. The former approach can be considered an a priori technique and the latter
scheme an a posteriori one, although there is some overlap in this classification. We also use the
common but ambiguous designations ‘adaptive’ (ATS) and ‘heuristic’ (HTS) for the truncation
error-based and convergence-based techniques, respectively. The various schemes were evaluated
for two one-dimensional problems characterized by strongly nonlinear boundary conditions and
soil hydraulic properties and sharp infiltration fronts.

For the initial solution estimates in the Picard iteration scheme used as the nonlinear solver in
our model, the results show that second order extrapolation, relying on the solution at the previous
three time levels, significantly improves convergence compared to the commonly used zero order
estimation where only the previous time level is used. Second-order extrapolation is especially
effective for the HTS time stepping approach, enabling larger and thus fewer time steps and making
this approach as or more computationally efficient than the ATS method.

For the adaptive time stepping approaches, the results show that truncation error-based methods
are not always to be preferred over convergence-based schemes. When simulating strong non-
linearities the size of the time step can be constrained by the convergence of the iterative scheme
instead of the time truncation error. Adaptive schemes based on the latter can give rise to non-
linear solver failures that decrease the computational performance of the simulator. Although more
empirical or heuristic, HTS provided a better control on the behaviour of the nonlinear iteration
and resulted in more efficient simulations. Further research is needed in the development of mixed
adaptive schemes that rely on both local truncation error estimation and nonlinear convergence
properties. It is also observed that when accuracy constraints are low (i.e. high tolerance values),
the behaviour of the ATS scheme can be dominated by its empirical parameters. This again limits
to some extent the applicability of the a priori technique, since stringent accuracy constraints are
not often used in practical simulations, in consideration of computational costs and in recognition
of other sources of error (model and data) inherent in the modelling process.
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